251 research outputs found

    K-SHAP: Policy Clustering Algorithm for Anonymous State-Action Pairs

    Full text link
    Learning agent behaviors from observational data has shown to improve our understanding of their decision-making processes, advancing our ability to explain their interactions with the environment and other agents. While multiple learning techniques have been proposed in the literature, there is one particular setting that has not been explored yet: multi agent systems where agent identities remain anonymous. For instance, in financial markets labeled data that identifies market participant strategies is typically proprietary, and only the anonymous state-action pairs that result from the interaction of multiple market participants are publicly available. As a result, sequences of agent actions are not observable, restricting the applicability of existing work. In this paper, we propose a Policy Clustering algorithm, called K-SHAP, that learns to group anonymous state-action pairs according to the agent policies. We frame the problem as an Imitation Learning (IL) task, and we learn a world-policy able to mimic all the agent behaviors upon different environmental states. We leverage the world-policy to explain each anonymous observation through an additive feature attribution method called SHAP (SHapley Additive exPlanations). Finally, by clustering the explanations we show that we are able to identify different agent policies and group observations accordingly. We evaluate our approach on simulated synthetic market data and a real-world financial dataset. We show that our proposal significantly and consistently outperforms the existing methods, identifying different agent strategies.Comment: ICML 202

    Equitable Marketplace Mechanism Design

    Full text link
    We consider a trading marketplace that is populated by traders with diverse trading strategies and objectives. The marketplace allows the suppliers to list their goods and facilitates matching between buyers and sellers. In return, such a marketplace typically charges fees for facilitating trade. The goal of this work is to design a dynamic fee schedule for the marketplace that is equitable and profitable to all traders while being profitable to the marketplace at the same time (from charging fees). Since the traders adapt their strategies to the fee schedule, we present a reinforcement learning framework for simultaneously learning a marketplace fee schedule and trading strategies that adapt to this fee schedule using a weighted optimization objective of profits and equitability. We illustrate the use of the proposed approach in detail on a simulated stock exchange with different types of investors, specifically market makers and consumer investors. As we vary the equitability weights across different investor classes, we see that the learnt exchange fee schedule starts favoring the class of investors with the highest weight. We further discuss the observed insights from the simulated stock exchange in light of the general framework of equitable marketplace mechanism design

    ATMS: Algorithmic Trading-Guided Market Simulation

    Full text link
    The effective construction of an Algorithmic Trading (AT) strategy often relies on market simulators, which remains challenging due to existing methods' inability to adapt to the sequential and dynamic nature of trading activities. This work fills this gap by proposing a metric to quantify market discrepancy. This metric measures the difference between a causal effect from underlying market unique characteristics and it is evaluated through the interaction between the AT agent and the market. Most importantly, we introduce Algorithmic Trading-guided Market Simulation (ATMS) by optimizing our proposed metric. Inspired by SeqGAN, ATMS formulates the simulator as a stochastic policy in reinforcement learning (RL) to account for the sequential nature of trading. Moreover, ATMS utilizes the policy gradient update to bypass differentiating the proposed metric, which involves non-differentiable operations such as order deletion from the market. Through extensive experiments on semi-real market data, we demonstrate the effectiveness of our metric and show that ATMS generates market data with improved similarity to reality compared to the state-of-the-art conditional Wasserstein Generative Adversarial Network (cWGAN) approach. Furthermore, ATMS produces market data with more balanced BUY and SELL volumes, mitigating the bias of the cWGAN baseline approach, where a simple strategy can exploit the BUY/SELL imbalance for profit

    Differentially Private Synthetic Data Using KD-Trees

    Full text link
    Creation of a synthetic dataset that faithfully represents the data distribution and simultaneously preserves privacy is a major research challenge. Many space partitioning based approaches have emerged in recent years for answering statistical queries in a differentially private manner. However, for synthetic data generation problem, recent research has been mainly focused on deep generative models. In contrast, we exploit space partitioning techniques together with noise perturbation and thus achieve intuitive and transparent algorithms. We propose both data independent and data dependent algorithms for ϵ\epsilon-differentially private synthetic data generation whose kernel density resembles that of the real dataset. Additionally, we provide theoretical results on the utility-privacy trade-offs and show how our data dependent approach overcomes the curse of dimensionality and leads to a scalable algorithm. We show empirical utility improvements over the prior work, and discuss performance of our algorithm on a downstream classification task on a real dataset
    corecore